49 research outputs found

    Differential nutrient limitation and tree height control leaf physiology, supporting niche partitioning in tropical dipterocarp forests

    Get PDF
    1. Revealing the mechanisms of environmental niche partitioning within lowland tropical forests is important for understanding the drivers of current species distributions and potential vulnerability to environmental change. Tropical forest structure and species composition change across edaphic gradients in Borneo over short distances. However, our understanding of how edaphic conditions affect tree physiology and whether these relationships drive niche partitioning within Bornean forests remains incomplete. 2. This study evaluated how leaf physiological function changes with nutrient availability across a fine-scale edaphic gradient and whether these relationships vary according to tree height. Furthermore, we tested whether intraspecific leaf trait variation allows generalist species to populate a wider range of environments. 3. We measured leaf traits of 218 trees ranging in height from 4 to 66 m from 13 dipterocarp species within four tropical forest types (alluvial, mudstone, sandstone and kerangas) occurring along an <5 km edaphic gradient in North Borneo. The traits measured included saturating photosynthesis (Asat), maximum photosynthetic capacity (Vcmax), leaf dark respiration (Rleaf), leaf mass per area (LMA), leaf thickness, minimum stomatal conductance (gdark) and leaf nutrient concentrations (N, P, Ca, K and Mg). 4. Across all species, leaf traits varied consistently in response to soil nutrient availability across forest types except Rleaf_mass, [Mg]leaf and [Ca]leaf. Changes in photosynthesis and respiration rates were related to different leaf nutrients across forest types, with greater nutrient-use efficiency in more nutrient-poor environments. Generalist species partially or fully compensated reductions in mass-based photosynthesis through increasing LMA in more nutrient-poor environments. 5. Leaf traits also varied with tree height, except Vcmax_mass, but only in response to height-related modifications of leaf morphology (LMA and leaf thickness). These height–trait relationships did not vary across the edaphic gradient, except for Asat, [N]leaf, [P]leaf and [K]leaf. 6. Our results highlight that modification of leaf physiological function and morphology act as important adaptations for Bornean dipterocarps in response to edaphic and vertical environmental gradients. Meanwhile, multiple nutrients appear to contribute to niche partitioning and could drive species distributions and high biodiversity within Bornean forest landscapes

    Effect of priming interval on reactogenicity, peak immunological response, and waning after homologous and heterologous COVID-19 vaccine schedules: exploratory analyses of Com-COV, a randomised control trial

    Get PDF
    Background: Priming COVID-19 vaccine schedules have been deployed at variable intervals globally, which might influence immune persistence and the relative importance of third-dose booster programmes. Here, we report exploratory analyses from the Com-COV trial, assessing the effect of 4-week versus 12-week priming intervals on reactogenicity and the persistence of immune response up to 6 months after homologous and heterologous priming schedules using the vaccines BNT162b2 (tozinameran, Pfizer/BioNTech) and ChAdOx1 nCoV-19 (AstraZeneca). Methods: Com-COV was a participant-masked, randomised immunogenicity trial. For these exploratory analyses, we used the trial's general cohort, in which adults aged 50 years or older were randomly assigned to four homologous and four heterologous vaccine schedules using BNT162b2 and ChAdOx1 nCoV-19 with 4-week or 12-week priming intervals (eight groups in total). Immunogenicity analyses were done on the intention-to-treat (ITT) population, comprising participants with no evidence of SARS-CoV-2 infection at baseline or for the trial duration, to assess the effect of priming interval on humoral and cellular immune response 28 days and 6 months post-second dose, in addition to the effects on reactogenicity and safety. The Com-COV trial is registered with the ISRCTN registry, 69254139 (EudraCT 2020–005085–33). Findings: Between Feb 11 and 26, 2021, 730 participants were randomly assigned in the general cohort, with 77–89 per group in the ITT analysis. At 28 days and 6 months post-second dose, the geometric mean concentration of anti-SARS-CoV-2 spike IgG was significantly higher in the 12-week interval groups than in the 4-week groups for homologous schedules. In heterologous schedule groups, we observed a significant difference between intervals only for the BNT162b2–ChAdOx1 nCoV-19 group at 28 days. Pseudotyped virus neutralisation titres were significantly higher in all 12-week interval groups versus 4-week groups, 28 days post-second dose, with geometric mean ratios of 1·4 (95% CI 1·1–1·8) for homologous BNT162b2, 1·5 (1·2–1·9) for ChAdOx1 nCoV-19–BNT162b2, 1·6 (1·3–2·1) for BNT162b2–ChAdOx1 nCoV-19, and 2·4 (1·7–3·2) for homologous ChAdOx1 nCoV-19. At 6 months post-second dose, anti-spike IgG geometric mean concentrations fell to 0·17–0·24 of the 28-day post-second dose value across all eight study groups, with only homologous BNT162b2 showing a slightly slower decay for the 12-week versus 4-week interval in the adjusted analysis. The rank order of schedules by humoral response was unaffected by interval, with homologous BNT162b2 remaining the most immunogenic by antibody response. T-cell responses were reduced in all 12-week priming intervals compared with their 4-week counterparts. 12-week schedules for homologous BNT162b2 and ChAdOx1 nCoV-19–BNT162b2 were up to 80% less reactogenic than 4-week schedules. Interpretation: These data support flexibility in priming interval in all studied COVID-19 vaccine schedules. Longer priming intervals might result in lower reactogenicity in schedules with BNT162b2 as a second dose and higher humoral immunogenicity in homologous schedules, but overall lower T-cell responses across all schedules. Future vaccines using these novel platforms might benefit from schedules with long intervals. Funding: UK Vaccine Taskforce and National Institute for Health and Care Research
    corecore